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ON THE STABILITY OF LAMINAR PLUMES: 

SOME NUMERICAL SOLUTIONS AND EXPERIMENTS 
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Almstract-An investigation of the hydrodynamic stability of a laminar plume arising from a horizontal line 
source of heat was carried out using the Tollmien-Schlichting theory of small disturbances. Inviscid 
solutions of the Orr-Sommerfeld equation were obtained for both symmetric and asymmetric disturbances 
and the effect of the Prandtl number on the inviscid stability was calculated for asymmetric disturbances. 
The base flow was found to be less stable for the asymmetric mode. In addition, the full disturbance 
momentum equations, coupled and uncoupled from the energy equation, were numerically integrated with 
the boundary conditions appropriate for asymmetric disturbances superimposed on the symmetric plume 
base flow. Neutral stability curves have been obtained in terms of the Grashof number. 

The predominance of the assumed asymmetric mode of flow oscillation was verified experimentally by 
perturbing a plume, in air, with a vibrating ribbon. A Mach-Zehnder interferometer was used to observe 
the disturbances as they were convected downstream. 

The experimental results demonstrate that sufficiently high frequency disturbances are stable as they are 
convected downstream. 

NOMENCLATURE 

F’, dimensionless velocity of the base flow, 
F’ = @J*; 

f, disturbance frequency; 

G, modified Grashof number, G = 2(,/2) 

(Gr)+ ; 
Gr, Local Grashof number, 

Gr =_ sB*x3(To - u. 
v2 ’ 

T 
t, 
u*, 
U, 

X, 

Y, 

acceleration of gravity; 
thermal conductivity of the fluid; 
dimensionless disturbance temperature 
amplitude function, s _= S/(T,, - T,); 
base flow temperature; 
instantaneous flow temperature; 
characteristic velocity, U* = vG2/4x; 
instantaneous velocity in vertical direc- 
tion; 
coordinate in vertical direction; 
coordinate in horizontal direction; 

dimensionless wave number, o! = ~3; 
amplification factor along x coordinate; 
dimensionless frequency of disturbance, 

P = B(W*); 
time amplification factor at given x; 
coefficient of volumetric expansion; 
characteristic length, 6 E 4x/G; 
dimensionless disturbance velocity am- 
plitude function, C#I = $/SU* ; 
dimensionless temperature of the base 
flow, 

@S 
T- T, 

To - T,; 

dimensionless distance in y direction, 
? = Y/d; 
wavelength of the disturbance; 
density of the base flow; 
kinematic viscosity of the fluid; 
Prandtl number; 
dimensionless time, r = Z/d/U* ; 
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I.4 dynamic viscosity of the fluid. 

Other symbols 
I 
2 differentiation with respect to the simi- 

larity variable q; 
(- ), dimensional quantity; 
(- ), disturbance quantity. 

INTRODUCTION 

THE TRANSITION from laminar to turbulent flow 
in a fluid has drawn the attention of many 
investigators throughout the years. The analysis 
of stability is commonly done by perturbing 
a given steady-state solution of the equations 
of motion with small periodic velocity and/or 
temperature disturbances. Usually a single 
sinusoidal mode is considered. If the disturbance 
decays, the flow is said to be stable. If the dis- 
turbance grows or remains at some magnitude 
different from zero, the flow is said to be respec- 
tively unstable or neutrally stable. 

Squire (1933) showed that, in boundary layer 
flow, two-dimensional disturbances amplify at a 
lower Reynolds number than three-dimensional 
ones, and are, therefore, the least stable. Knowles 
and Gebhart [l] extended this proof to a natural 
convection flow where velocity and temperature 
disturbances are coupled. In light of these 
results, it is sufficient in this investigation to 
consider only two-dimensional disturbances 
superimposed upon the parallel flow. 

The present paper presents an analysis of the 
hydrodynamic stability of a two-dimensional 
plume, flow generated by an infinite line source 
of heat. This flow circumstance has received 
little study in the past and the authors are not 
aware of any other study of the stability of 
such flows. Previous stability studies of similar 
flows are mentioned below. 

Pai [2] considered the stability of a two- 
dimensional laminar jet flow of a compressible 
and incompressible fluid. He purported to 
show that there is no lower branch of the neutral 
curve. However, it was pointed out that the 
lower branch of the neutral curve may be so 

close to the axis u = 0 that even for large Re 
the expansion in powers of (rRe)-’ is not valid. 

Curle [3] considered the problem of the 
stability of a laminar jet with a steady velocity 
profile. The fourth derivative of the disturbance 
function is assumed to be significant only near 
the singular layer. Results confirm the existence 
of the lower branch of the neutral curve and 
show how quickly its asymptote, the a = 0 axis, 
is approached. 

Plapp [4] considered the stability of laminar 
flow near a vertical heated plate with a density- 
dependent body force. He was able to make 
actual calculations by neglecting coupling be- 
tween the momentum and energy equations. 
The results were not in close agreement with 
existing experimental observations. 

Ostrach and Maslen [S] considered the 
stability of fully developed natural convection 
flow between vertical plates. It was shown, that 
for large values of Re, the body forces affect 
the stability only through the base flow profiles. 
Bothsymmetricalandasymmetricaldisturbances 
were considered. 

The present paper considers various aspects 
of laminar stability limits for the two-dimen- 
sional plume flow. The full equations for linear 
stability theory for the plume base flow are 
shown to have an asymptotic (in local Grashof 
number Gr) inviscid behaviour. This stability 
limit is calculated for both symmetric and asym- 
metric disturbances and, for the latter case, 
for a wide range of Prandtl number, n. Similarly, 
as Gr becomes large, the coupling effect is 
reduced and uncoupled neutral stability curves 
curves were obtained for various CJ. Finally, it is 
shown that this coupling mechanism between 
temperature and velocity disturbances through 
buoyancy is much more important at lower 
values of Gr, i.e. near the threshold of instability. 
A coupled neutral curve is given, showing this 
effect. 

These calculations were carried out for the 
plume base flows appropriate for the various 
values of 0. These flows were calculated from the 
following formulation given by Gebhart et al. [6]: 
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F"' + 2.4FF" - 0.8 F'2 + @ = 0 
(1) 

@" + 2*4a(F@)' = 0, 

with boundary conditions: 

F(0) = F"(0) = W(O) = 0, @(O) = 1, 
(2) 

F'(m) -+ 0, 

where @ are F are the temperature and stream 
functions, for the similar flow circumstance 
and the primes indicate differentiation with 
respect to the similarity variable q. 

THE STABILITY EQUATIONS AND 
BOUNDARY CONDITIONS 

The flow configuration for a plume above an 
infinitely long horizontal line source is shown 
in Fig. 1. The hydrodynamic stability of the 
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FIG. 1. Geometry. 

base flow is examined by the method of small 
disturbances; inquiring whether a certain small 
disturbance, superimposed on the base flow, 
and satisfying the governing continuity, momen- 
tum and energy equations, is amplified or 
damped as it travels downstream. 

The form of the disturbances stream and 
temperature functions assumed are: 

$<x, y, 7) = &Y) exp [i@x - Bf)] 

7(x, y, Z) = S(y) exp [i(Ex - @)I 

where 4 and S are the complex amplitude 
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(3) 

(4) 

func- 
tions of the disturbances. In the most general 
fOUri fl = fl,, + i/Jim where fl,, denotes the fre- 
quency of the disturbances and pi,,, indicates how 
their amplitude varies with time at given X. 
Similarly 6! = Cr,, + it&,, where Cc,, = 3n/A is the 
wave number of the disturbance and &,,, des- 
cribes their amplification with X. In the present 
work pi,,, is taken to be zero since we are con- 
sidering steady locally periodic flow. This pro- 
cedure results in the same predictions of neutral 
stability as the more traditional measure of 
taking ii,.,, = 0. 

The resulting stability equations after follow- 
ing usual procedures of nondimensionalization 
are : 

0”” - 2&p’ + x4($ .+ s’ 

= iaG (4” - a2c$) - F"'+ 1 (5) 
,I s- n’r=ia&[(F.-$s-+B’] (6) 

where fire/a,, = c is the wave velocity and G is 
an indication of the vigor of the local flow. 

Equation (5) is the traditional Orr-Sommer- 
feld equation with an additional coupling 
term, s’, which arises from the buoyancy effect. 
Combined with the disturbance energy equation, 
(6), the problem is of sixth-order. 

The foregoing formulation is general and 
governs stability for any vertical natural con- 
vection boundary layer flow. The distinguishing 
characteristics of a particular flow and disturb- 
ance configuration are manifested only in the 
specification of the various boundary conditions 
relevant to that flow. The nature of a plume flow 
permits the formulation of boundary conditions 
at a large distance out from the plume midplane: 

@(*‘x))+o, $(+a) + 0, 

s(*co) + 0. (7) 
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Since any solution of (5) and (6) can be 
considered to be a linear combination of 
symmetrical and asymmetrical solutions, these 
two extreme situations were postulated. The 
two types of motions were considered separately 
and each yields the necessary additional three 
boundary conditions. 

4(O) = 4”(O) = s’(0) = 0 

(Symmetric disturbances) 

@(O) = 4”‘(O) = s(0) = 0 

(8) 

(Asymmetric disturbances). (9) 

Equations (5) and (6) with (7) and either (8) or (9) 
are the full statement. These were numerically 
integrated for the inviscid asymptote, for the 
uncoupled circumstance, and in the fully coupled 
form as discussed below. 

PROCEDURE 

Inviscid solution 
The solution of the inviscid part of the 

momentum equation is first found for various 
Prandtl numbers. These results are important 
since they indicate the asymptotic behavior of 
both the coupled and uncoupled modes as clG 
becomes large. 

The inviscid equation is obtained from 
equation (5), with the appropriate simplification. 
Considering a large value for crG, the left term of 
the equation may be neglected compared to the 
terms on the right. The resulting second order 
differential equation is : 

B. GEBHART 

4” = [ a2 - F, Fp,a] fp. (10) 

The boundary conditions necessary for the 
integration of the second order differential 
equation are : 

dm = 0, 4(a) -+ 0 

(Symmetric disturbances) (11) 

4’(O) = 0, 4(m) + 0 

(Asymmetric disturbances). 

Based on equation (lo), Shen [7] has listed some 

general conditions which were obtained when 
amplified disturbances are assumed to exist. 
The proof of these results is not reproduced here. 
It is noticed, however, that since the plume 
clearly has an inflection point (see Gebhart et al. 
[6]) it follows that for this case, equation (10) 
has a positive real eigenvalue ~1~. Subject to the 
boundary conditions in (1 l), it is found by direct 
numerical integration of equation (10) th& for 
0 = 0.7, 

tl = 1.3847 

and 

(Asymmetric disturbances) 

o! = 0.7088 (Symmetric disturbances). 

If the actual neutral stability curve is found at 
lower values of a, as is subsequently seen to be 
the case; the above two values indicate that the 
flow is much less stable for asymmetric dis- 
turbances. The lower branch of the neutral curve 
is also known to be asymptotic to a = 0 as 
G + c;o since a = 0 is the other inviscid 
asymptote. In the following calculations, only 
the asymmetric case is considered further. 

Effect of Prandtl number on inviscid instability 
It is not the object of this work to present a 

detailed study of the effect of the Prandtl number 
on plume stability. Nevertheless, it is convenient 
to know if an increase or decrease in the stability 
limit is to be expected by a variation of Prandtl 
number. Since the coupled and uncoupled 
solution merge toward the inviscid behavior at 
large G, these asymptotic values were computed 
for a wide range of Prandtl number. If the value 
of the asymptote increases the region of insta- 
bility also increases. 

Figures 2 and 3 indicate the Prandtl number 
dependence of this stability limit. The value of /I 
apparently reaches a minimum at r~ = 1, whereas 
a appears to approach an asymptotic minimum 
as 0 + 0. 

Uncoupled solution, including viscous effects 
For moderate values of cxG, the simplifications 

made above cease to be valid and the viscous 
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FIG. 2. Effect of Prandtl number on stability. Inviscid and 
uncoupled case. Asymmetric disturbances. 
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FIG. 3. Effect of Prandtl number on stability. Inviscid and 
uncoupled case. Asymmetric disturbances. 

terms must be retained. The asymptotic solution 
of the disturbance amplitude functions at the 
outer edge of the boundary region where the base 
flow quantities that appear in the Orr-Sommer- 
field equations are small compared with the 
other terms is: 

& = e-q + BeBbq (12) 

where b = ,/(a’ - ij?G), b,, > 0 and B a 
constant. 

In accordance with the method of Dring and 
Gebhart [8] for flow over a vertical surface, the 
procedure used here is to integrate the viscous 
momentum disturbance equation from the edge 

of the boundary layer to the mid-plane of the 
plume, simultaneously satisfying boundary con- 
ditions at zero and the asymptotic solution at 
the edge of the boundary layer. The integration 
was started at the outer edge with the asymptotic 
solution and was continued toward the mid- 
plane. A system of eigenvalues and parameters 
was considered to be correct when the asymptotic 
expression provided a set of starting conditions 
at the outer edge which resulted in a satisfaction 
of the boundary conditions at q = 0. 

There is no reason to believe a priori that this 
uncoupled solution gives a proper representation 
of the stability of the plume. It was found by 
previous investigators that in similar natural 
convection problems the coupling term is 
important and may not be neglected. It is, 
therefore, necessary to also determine the 
coupled solution and to estimate the importance 
of the coupling effect. 

Coupled solution 
The method that was employed in solving the 

system of coupled equations is somewhat 
different from that employed in the uncoupled 
case above. The asymptotic behavior (for large 
q) of (5) and (6) for the velocity and temperature 
disturbance amplitudes, analogous to (12) for 
the uncoupled case, was reported by Nachtsheim 
[9]. Dring and Gebhart, using this asymptotic 
behavior and following a procedure similar to 
the one described above for the uncoupled case, 
were able to solve the coupled equations for 
natural convection flow near a vertical plate. 
Since the method requires an interpolation in a 
six-dimensional space, it was found to converge 
very slowly to a solution in a stability plane. 

Hieber [lo] has shown that instead of employ- 
ing the above procedure. it is more efficient to 
individually compute the three linearly in- 
dependent integrals which decay exponentially 
for large q. Denoting these integrals by c$J~, c$~, & 
(with associated temperature disturbances sl, 
s2, sJ), one has that, as 9 + cc, 

41 - eWW, & - embV, C& - emdrl, (13) 
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where b was defined by (12) and 

d = J(c? - @Go). (14) 

Since the asymptotic behavior of the base flow 
temperature profile is 

Cp = C exp ( - 2.4~~ F, q) (15) 

(where F, = lim F(q) and is equal to 0.931 for 
9-m 

0 = 0.7) it follows from (6) and (13) that as 

? + x)0, 

s1 = C, exp [ -(tl + 2.40 F,,) ~1 

s2 = Cz exp [-(b + 2.4a F,,J ~1 

sj = C, exp(-dq) 

(16) 

where C,, C, and C, are appropriate constants. 
Denoting the complete solution by 

4 = $1 + A& + W3 (17) 

one proceeds to determine #i, $J~, & (and, 
concomitantly, sr, s2, sJ by numerically integrat- 
ing equations (5) and (6) from the edge of the 
plume to rl = 0; in each case, the appropriate 
asymptotic behavior in (13) and (16) are em- 
ployed as initial conditions. Having determined 
the three independent integrals at q = 0, one 
evaluates A and B by applying the two boundary 
conditions 4’(O) = 0 = 4”‘(O). The third bound- 
ary condition at the midplane, s(O) = 0, will in 
general not be satisfied. Supposing G and B to be 
fixed, one then iterates on c1 (the eigenvalue), 
repeating the process until the third boundary 
condition is also satisfied. 

In effect, then, this method reduces the 
problem to finding a point in two-dimensional 
(a is complex, in general) rather than in six- 
dimensional space. It is this procedure which 
has been employed in obtaining the coupled 
results which are discussed below. 

RESULTS 

Eigenvalues and eigenfunctions are the com- 
puted results of this study. The eigenvalue 
information for the coupled and uncoupled case 

is shown in Figs. 4 and 5 in plots of GI and B vs. G. 
For neutral stability /I is equal to /I,, and a is a,,. 

The neutral curve for the uncoupled case was 
computed for Prandtl number 0.7, and small 
sections of curves were obtained for rr = 2.0, 
6.7 and 10 as shown on Fig. 4. Also shown on 
Figs. 4 and 5 is the coupled curve for cr = 0.7. 
For 0 = 0.7, the upper branch of the coupled 
and uncoupled neutral curves appear to con- 
verge and to approach the inviscid asymptote. 
as expected. This suggests that the upper branch 
does not go to zero as G increases, i.e. even as 
G + 00 there exist a certain unstable range of 
wavelengths and this range seems to be wider for 
asymmetric disturbances. 

The “critical” Grashof number for the un- 
coupled mode is 10.34 for 0 = 0.7. The results 
calculated allowing for coupling are shown in 
Figs. 4 and 5, it is seen that the coupling term is 
important at low G but that its effect decreases 
as the Grashof number is increased. The 
computation in the very low G region do not 
reveal the existence of a lower branch of the 
neutral curve and of the “critical” Grashof 
number. At extremely low values of G our 
boundary layer simplifications are no longer 
applicable and therefore, the relevance of this 
fact is not clear. 

In Fig. 5, the curves are plotted in terms of fl. 
Since physical frequencies of small disturbances 
introduced into the flow remain constant as 
they are convected by the base flow, one may 
calculate the /I vs. G path in this stability plane. 
For a plume, these paths are defined by 
PC-+ = C. Several of such paths are shown on 
Fig. 5 for the following test conditions (air, 
atmospheric conditions, Q = 58.6 Btu/h ft, wire 
length = 6 in., wire dia. = 0.005 in.). At low 
frequency, the path enters deeply into the 
unstable region as G increases and such disturb- 
ances are strongly amplified. At higher fre- 
quencies, however, the paths traverse less of the 
amplified region and disturbances are probably 
less amplified. At a suhiciently high frequency the 
path does not penetrate the amplified region and 
disturbances are always damped. 
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FIG. 4. Computed neutral stability curves. Coupled and 
uncoupled flow. Asymmetric disturbances. 
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FIG. 5. Computed neutral stability curves. Coupled and 
uncoupled flow. Asymmetric disturbances. 0 = 0.7. 
_._._._ Constant frequency contours for air at test con- 

ditions. 

Present results contrast with those obtained 
for natural convection flows over vertical plates. 
For such flows, constant frequency paths are 
defined by fiG+ constant. Therefore, disturbances 
of all frequencies cross the neutral curve and 
enter into the amplified region as they are 
convected downstream. One may say that such a 
flow eventually becomes unstable for all dis- 
turbances, regardless of frequency, if they are 
convected far enough downstream. In the 
present case, very high frequency disturbances 
appear to be always stable because they travel 
on paths that do not enter the unstable region. 
It can be shown that 

1 8n -=- (18) 
X ctti . 

where x is the distance from the source and a 
and G parameters computed along the neutral 
curve. Disturbances at the nose and along the 
low branch of the neutral curve are seen to have 
a very long wavelength, much longer than the 
distance to the source which generates the 
plume, thus decreasing the importance of this 
region. 

H 
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EXPERIMENTAL OBSERVATIONS 

The foregoing results predict the behavior of 
small disturbances as they are convected down- 
stream in a plume rising from a line source of 
heat. In order to assess the reasonableness of 
these predictions, an experiment was performed. 
A 6 in. long wire of 0005 in. dia. was electrically 
heated in air at atmospheric pressure and a 
5 in. Mach-Zehnder interferometer was used 
to determine the temperature field above the 
source of heat. The light source was a Mercury 
vapor lamp with a green interference filter, the 
interferometer sensitivity being 7.25 degrees per 
fringe for a two-dimensional field 6 in. wide. 
Adjustment was made to the infinite fringe, each 
fringe representing an isothermal contour. 

An interferogram of the unperturbed plume 
in air was given by Gebhart et al. [6]. The inter- 
ferogram clearly shows the extent of the thermal 
boundary region of the plume. The steadiness 
of the plume indicates the quiet surrounding in 
the test section. Since for a Prandtl number of 
O-7 the velocity and the thermal boundary 
regions are of almost equal extent, the region seen 
is essentially the whole plume. The rectangular 
grid shown was introduced to check optical 
distortions of the system of lenses, and to serve 
as a frame of reference for distance measure- 
ments. The vertical distance between the lines 
is 9 in. and the horizontal distance is d in. 

The study of stability was performed by 
introducing small controlled sinusoidal dis- 
turbances in the flow by means of a vibrating 
ribbon. The vibrator was a strip of metallic foil 
0005 in. thick and i in. high. It was 7 in. wide and 
positioned horizontally in the mid-plane of the 
plume, above and parallel to the line source. 

Figure 6 shows a sequence of plumes in air 
perturbed with controlled sinusoidal oscillation 
at different frequencies. Low frequency disturb- 
ances are strongly amplified and after a few 
oscillations the laminar base flow is completely 
transformed. As the frequency is increased, the 
amplification rate of the disturbances appears 
to be less, and a longer distance is apparently 
required to completely disrupt the flow. Dis- 

turbances of yet higher frequency were not 
observed downstream. 

The observed plume behavior is consistent 
with the calculated results presented in Fig. 5. 
The dotted lines represent the paths of disturb- 
ances convected downstream at constant fre- 
quency. The numerical values of frequencies 
assigned to each line were computed for the test 
conditions. 

Corresponding to each case on Fig. 6 a 
similar path on Fig. 5 can be drawn. Interfero- 
grams perturbed with frequencies higher than 
7 Hz are not presented since the disturbances 
are of relative small amplitude and are difficult 
to be visually detected. A hot wire constant- 
temperature anemometer was used to follow 
higher frequencies disturbances. It was found 
that disturbances with frequencies higher than 
about 12 Hz are not detected downstream. The 
computed results for coupled disturbances (Fig. 
5), predict that disturbances with frequencies 
higher than 15 Hz are stable, since they do not 
enter the unstable region. This discrepancy is not 
unreasonable since the introduced disturbance 
is not of perfect asymmetric form and does not 
necessarily become asymmetric during con- 
vection. Recall that the plume flow is appreciably 
more stable to symmetric disturbances. 

It was not possible in this experiment to 
determine conditions of neutral stability. The 
unstable region extends to very low values of G 
and, for our test conditions in air, this is at very 
small x (around 01 in.). Therefore it was not 
possible to introduce disturbances at even 
smaller x, moreover boundary layer simplifica- 
tions are no longer valid very near the heat 
source. 

CONCLUSIONS 

Previous work in the stability of natural 
convection flows near vertical surfaces has 
shown that buoyancy effects arising from temp- 
erature disturbances couple with velocity dis- 
turbances to promote instability. For an 
unbounded plume flow it is similarly found that 
the coupling effect is important, especially at low 
G, and that it may not be neglected. 
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FIG. 6. Plumes perturbed with sinusoidal disturbances at several frequencies. Air at atmospheric conditions. 

Q = 58.6 Btu/h ft, wire length = 6 in., wire dia. = 0405 in. 
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The experimental results obtained in the 2. S. I. PAI, On the stability of two-dimensional jet flow 

present work are not quantitative or conclusive, of pas. J. Aeronaut. Sci. 18. 731 (1951). , 
since no experimental determination of the ” 
neutral curve has been made. However, they do 4. 

indicate that disturbances of low frequency are 
strongly amplified and that disturbances of 5, 
sufficiently high frequency are damped as they 
move downstream. 

N.-C&a, On hydrodynamic ‘stability in unlimited 
fields of viscous flow, Proc. R. Sot. 238,489 (1956). 
J. E. PLAPP, The analitic study of laminar boundary 
layer stability in free convection, J. Aeronout. Sci. 24, 
318 (1957). 
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ET EXPERIENCES 

R&urn&On a rtalisC une ttude de la stabiliti: hydrodynamique d’un panache laminaire s’klevant d’une 
source thermique linbaire & l’aide de la thkorie des petites perturbations de Tollmien~Schlichting. Des 
solutions de fluides non visqueux de l’tquation d’Orr-Sommerfeld sont obtenues pour des perturbations 
B la fois symttriques et dissymbtriques et on a calcul& l’effet du nombre de Prandtl sur la stabilitt sans vis- 
cositC pour des perturbations dissymCtriques. On trouve que I’tcoulement de base est moins stable pour 
le mode dissymttrique. En plus toutes les kquations de perturbation de la quantitC de mouvement couplkes 
ou non g l’kquation d’knergie, sent numeriquement inttgrtes avec ies conditions limites approprites 
pour les perturbations dissymetriques superpostes & I’Ccoulement de base du panache symttrique. On 
obtient des courbes de stabilitk neutre en fonction du nombre de Grashof. 

En perturbant un panachedans I’air avec un ruban vibrant on a v&iIiCexp&rimentalement la prkdominance 

du mode suppos& dissymttrique des oscillations de l’&coulement. Un interf&rom&tre Mach-Zehnder est 
utilist afin d-observer comment les perturbations sont convect&es en aval. 

Les r&hats expCrimentaux dtmontrent que des perturbations g frkquence sullisamment hautes sont 
stables quand elles sent convect&es en aval. 

DIE STABILlT;iT LAMINARER AUFTRIEBSSTRijMUNGEN: EINIGE NUMERISCHE 
UND VERSUCHE 

Zusammenfassung-Eine Untersuchung der hydrodynamischen StabilitLt einer laminaren Auftriebs- 
striimung, ausgeliist von einer horizontalen Linien- WLrmequelle, wurde unter Verwendung der Tollmein- 
Schlichting-Theorie fiir kleine StBrungen durchgefiihrt. 

LGsungen der Orr-Sommerfeld-Gleichung bei Vernachllssigung der Viskositlt erhllt man sowohl 
fiir symmetrische wie unsymmetrische StBrungen. der Einfluss der Prandtl-Zahl auf die “nicht zLhe 
Stabilitlt wurde fiir unsymmetrische StGrungen berechnet. Es zeigt sich, dass die Grundstrijmung fiir 
den unsymmetrischen Modus zu wenig stabil ist. Die vollstlndige Stiirungs-Impuls-Gleichung, gekoppelt 
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und entkoppelt mit der Energie-Gleichung, wurde mit geeigneten Randbedingungen durch Uber- 
lagerung unsymmetrischer Storungen ftir die symmetrische Auftriebsstromung numerisch integriert. 
Neutrale Stabilitltskurven erhalt man als Funktion der Grashof-Zahl. 

Das Vorherrschen des angenommenen unsymmetrischen Falls der Stromungsschwingung wurde 
experimentell durch Wrung einer Auftriebsstrijmung in Luft mit einem Vibrationsband nachgewiesen. 
Fur die Beobachtung der durch Konvektion aufwirts wandernden Stiirungen wurde ein Mach-Zehnder- 
Interferometer verwendet. 

Die experimentellen Ergebnisse zeigen, dass gentigend hochfrequente Stijrungen stabil sind, wlhrend 
sie stromabwarts wandern. 

K YCTO@IBBOCTM JIAMHHAPHMX CTPYEK : HEHOTOPbIE 
WICJIEHHME PEIIIEHMR II 3KCIIEPBMEHTbI 

AaaoT8qHJr-Mccne~osanrie ra~po~nnaMrisecKofi ~CTO~~YMB~CTH nahrkrrrapnoB CTPY~~KM, 

k%CXOARWefi It3 rOpH30HTaiUbHOFO JlUHeiHOI'O UCTOWIIlKa TenJIa, npOBOJVUlOCb, ElCllOJlb3yR 

TeOpHIO MaJIbIX BO3MyIUeHHii TOJIMlleHa-MiTHXTHHra. HefmHbIe pelUeHEiR ypaBHeHAR Oppa- 

~OMMep~eJIbJ(anOJlyYeHblKaK~JlRCHMMeTp~=IHbIX,TaKEl AJIfl aCHMMeTpWIHblX BO3MyqeHUfi, 

a BJIHRHUe 'iUCJla npaH&TJIR Ha HeRBHyIO yCTOfiYllBOCT6 paCCWiTaH0 AJIH aCHMMeTpWlHbIX 

BO3MyIIJeHlii-i. HatigeHo, 'IT0 0c~0B~0Zt ~OT~K MeHee YCT~WHB K aCEiMMeTpMqHbIM BOBMylUe- 

HIIRM. KpOMe TOrO 6nnri 'IHCJIeHHO npOIlHTeI'pHpOBaHbI ypaBHeHHH KOJlA'IeCTBa ABHHteHIlR 

pa3BKTbIX BO3MyIlJeHKlf COBMeCTHO C ypaBHeHIleM aneprnn A 6ea Hero npn rpannsrtbrx 
yCJIOBHHX, COOTBeTCTByloWiX aCEiMMeTpH9HbIM BO3MyIIfeHKRM, HaJIO?KeHHbIM Ha CIIMMeTp- 

mHoe 0cHoBHoe Tegeme CTPY~~KH. nOJIyYeHbI HeHHTerpaJIbHbIe KpHBbIe yCTOZtWIBOCTW B 

3aBHCHMOCTH OT wicna Ppacro*a. IIpeo6naAanne npeAnonaraeMofi acrinrMeTpriWtoti rjr0phrr.t 
none6anaZt Te=IeHIlR 6nno npOBepeH0 3KCnepHMeHTaJlbHO nyTeM BOBMylUeHHR CTpytiKA B 

BO3AyXe C nOMO~bI0 Kone6mo~eticK JleHTbI. Am Ha6nlOAeHIlR BOBMyIIleHEIti n0 Mepe WX 

nepeABIlHteHIlFtBHEl3IIO nOTOKyllClIOJIb3OBaZCRMHTep$epOMeTp Maxa-qeHAepa.Pe3ynbTaTbI 

aKcnepliMeHTOB nOKaablBaH)T, YTO AOCTaTOYHO 60nbmaH 9aCTOTa BO3Myll&eHHfi yCTOiWiBa 

npa nx nepeme~eHmi BHH~ II0 noToKy. 


