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Abstract—An investigation of the hydrodynamic stability of a laminar plume arising from a horizontal line
source of heat was carried out using the Tollmien—Schlichting theory of small disturbances. Inviscid
solutions of the Orr-Sommerfeld equation were obtained for both symmetric and asymmetric disturbances
and the effect of the Prandtl number on the inviscid stability was calculated for asymmetric disturbances.
The base flow was found to be less stable for the asymmetric mode. In addition, the full disturbance
momentum equations, coupled and uncoupled from the energy equation, were numerically integrated with
the boundary conditions appropriate for asymmetric disturbances superimposed on the symmetric plume
base flow. Neutral stability curves have been obtained in terms of the Grashof number.

The predominance of the assumed asymmetric mode of flow oscillation was verified experimentally by
perturbing a plume, in air, with a vibrating ribbon. A Mach-Zehnder interferometer was used to observe
the disturbances as they were convected downstream.

The experimental results demonstrate that sufficiently high frequency disturbances are stable as they are

convected downstream.
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NOMENCLATURE ., dimensionless wave number, & = 0;
dimensionless velocity of the base flow, %, amplification factor along x coordinate;
F =u/U*; B.., dimensionless frequency of disturbance,
disturbance frequency; B = B(6/U*);
modified Grashof number, G = 2(,/2) Bim» time amplification factor at given x;
(Gr)?; p*, coefficient of volumetric expansion;
Local Grashof number, o, characteristic length, 6 = 4x/G;

*o3 ¢, dimensionless disturbance velocity am-
Gr = M—:L"); plitude function, ¢ = ¢/SU*;

v $, dimensionless temperature of the base
acceleration of gravity; flow,
thermal conductivity of the fluid; T_T
dimensionless disturbance temperature p=_—2
amplitude function, s = §/(T, — T,); L-T.
base flow temperature; n,  dimensionless distance in y direction,
" instantaneous flow temperature; n = y/o;

characteristic velocity, U* = vG?/4x; A,  wavelength of the disturbance;
instantaneous velocity in vertical direc- p, density of the base flow;
tion; v,  kinematic viscosity of the fluid;
coordinate in vertical direction: o, Prandtl number;
coordinate in horizontal direction; 7,  dimensionless time, t = 7/6/U*;
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4,  dynamic viscosity of the fluid.

Other symbols
! differentiation with respect to the simi-
larity variable #;
(—), dimensional quantity;
(~), disturbance quantity.

INTRODUCTION

THE TRANSITION from laminar to turbulent flow
in a fluid has drawn the attention of many
investigators throughout the years. The analysis
of stability is commonly done by perturbing
a given steady-state solution of the equations
of motion with small periodic velocity and/or
temperature disturbances. Usually a single
sinusoidal mode is considered. If the disturbance
decays, the flow is said to be stable. If the dis-
turbance grows or remains at some magnitude
different from zero, the flow is said to be respec-
tively unstable or neutrally stable.

Squire (1933) showed that, in boundary layer
flow, two-dimensional disturbances amplify at a
lower Reynolds number than three-dimensional
ones, and are, therefore, the least stable. Knowles
and Gebhart [1] extended this proof to a natural
convection flow where velocity and temperature
disturbances are coupled. In light of these
results, it is sufficient in this investigation to
consider only two-dimensional disturbances
superimposed upon the parallel flow.

The present paper presents an analysis of the
hydrodynamic stability of a two-dimensional
plume, flow generated by an infinite line source
of heat. This flow circumstance has received
little study in the past and the authors are not
aware of any other study of the stability of
such flows. Previous stability studies of similar
flows are mentioned below.

Pai [2] considered the stability of a two-
dimensional laminar jet flow of a compressible
and incompressible fluid. He purported to
show that there is no lower branch of the neutral
curve. However, it was pointed out that the
lower branch of the neutral curve may be so
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close to the axis a = 0 that even for large Re
the expansion in powers of (xRe)™! is not valid.

Curle [3] considered the problem of the
stability of a laminar jet with a steady velocity
profile. The fourth derivative of the disturbance
function is assumed to be significant only near
the singular layer. Results confirm the existence
of the lower branch of the neutral curve and
show how quickly its asymptote, the & = 0 axis,
is approached.

Plapp [4] considered the stability of laminar
flow near a vertical heated plate with a density-
dependent body force. He was able to make
actual calculations by neglecting coupling be-
tween the momentum and energy equations.
The results were not in close agreement with
existing experimental observations.

Ostrach and Maslen [5] considered the
stability of fully developed natural convection
flow between vertical plates. It was shown, that
for large values of Re, the body forces affect
the stability only through the base flow profiles.
Bothsymmetrical and asymmetrical disturbances
were considered.

The present paper considers various aspects
of laminar stability limits for the two-dimen-
sional plume flow. The full equations for linear
stability theory for the plume base flow are
shown to have an asymptotic (in local Grashof
number Gr) inviscid behaviour. This stability
limit is calculated for both symmetric and asym-
metric disturbances and, for the latter case,
for a wide range of Prandtl number, 6. Similarly,
as Gr becomes large, the coupling effect is
reduced and uncoupled neutral stability curves
curves were obtained for various o. Finally, it is
shown that this coupling mechanism between
temperature and velocity disturbances through
buoyancy is much more important at lower
values of Gr, i.e. near the threshold of instability.
A coupled neutral curve is given, showing this
effect.

These calculations were carried out for the
plume base flows appropriate for the various
values of 6. These flows were calculated from the
following formulation given by Gebhart et al. {6]:
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F” +24FF' —08F*+ ¢ =0
?" + 240 (FP) =0,
with boundary conditions:
F(0) = F"(0) = ¢'(0) = 0, o0y =1,
F'(o0) — 0,

)

where @ are F are the temperature and stream
functions, for the similar flow circumstance
and the primes indicate differentiation with
respect to the similarity variable 7.

THE STABILITY EQUATIONS AND
BOUNDARY CONDITIONS

The flow configuration for a plume above an
infinitely long horizontal line source is shown
in Fig. 1. The hydrodynamic stability of the
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FiG. 1. Geometry.

base flow is examined by the method of small
disturbances; inquiring whether a certain small
disturbance, superimposed on the base flow,
and satisfying the governing continuity, momen-
tum and energy equations, is amplified or
damped as it travels downstream.

The form of the disturbances stream and
temperature functions assumed are:
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U(x, .7 = ¢ exp[iax — pO]  (3)
i(x, y,7) = s(y) exp [i@x — B1)]  (4)

where ¢ and § are the complex amplitude func-
tions of the disturbances. In the most general
form B = B.. + iB,, where B,. denotes the fre-
quency of the disturbances and B,,,, indicates how
their amplitude varies with time at given x.
Similarly & = &,, + i%;, where &, = 2r/A is the
wave number of the disturbance and &, des-
cribes their amplification with x. In the present
work B, is taken to be zero since we are con-
sidering steady locally periodic flow. This pro-
cedure results in the same predictions of neutral
stability as the more traditional measure of
taking &, = 0.

The resulting stability equations after follow-
ing usual procedures of nondimensionalization
are:

¢ — 20" + atp+ &
= iaG |:(F' - B) (" — a*¢) — F'"‘i)] (5)

o

§" — a’s = iacG [(F’ - g) s — ¢d5’:| (6)

where B../a,. = ¢ is the wave velocity and G is
an indication of the vigor of the local flow.

Equation (5) is the traditional Orr—Sommer-
feld equation with an additional coupling
term, s’, which arises from the buoyancy effect.
Combined with the disturbance energy equation,
(6), the problem is of sixth-order.

The foregoing formulation is general and
governs stability for any vertical natural con-
vection boundary layer flow. The distinguishing
characteristics of a particular flow and disturb-
ance configuration are manifested only in the
specification of the various boundary conditions
relevant to that flow. The nature of a plume flow
permits the formulation of boundary conditions
at a large distance out from the plume midplane:

¢ (£0)—>0, P(x) -0,
s(+o00) — 0. 7N
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Since any solution of (5) and (6) can be
considered to be a linear combination of
symmetrical and asymmetrical solutions, these
two extreme situations were postulated. The
two types of motions were considered separately
and each yields the necessary additional three
boundary conditions.

#(0) = ¢"(0) = s'(0) = 0
(Symmetric disturbances)

$'(0) = ¢"(0) = s(0) = 0

(Asymmetric disturbances).

)

©

Equations (5) and (6) with (7) and either (8) or (9)
are the full statement. These were numerically
integrated for the inviscid asymptote, for the
uncoupled circumstance, and in the fully coupled
form as discussed below.

PROCEDURE

Inviscid solution

The solution of the inviscid part of the
momentum equation is first found for various
Prandt] numbers. These results are important
since they indicate the asymptotic behavior of
both the coupled and uncoupled modes as aG
becomes large.

The inviscid equation is obtained from
equation (5), with the appropriate simplification.
Considering a large value for oG, the left term of
the equation may be neglected compared to the
terms on the right. The resulting second order
differential equation is:

Y Y R
¢-[a2 F’—ﬁ/a]d)'

The boundary conditions necessary for the
integration of the second order differential
equation are:

(10)

$0) =0,  ¢(o0)—>0
(Symmetric disturbances) (11)
¢'0)=0, ¢(0)—0

(Asymmetric disturbances).

Based on equation (10), Shen [ 7] has listed some
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general conditions which were obtained when
amplified disturbances are assumed to exist.
The proof of these results is not reproduced here.
It is noticed, however, that since the plume
clearly has an inflection point (see Gebhart et al.
[6]) it follows that for this case, equation (10)
has a positive real eigenvalue a®. Subject to the
boundary conditions in (11), it is found by direct
numerical integration of equation (10) that, for
=07,

o = 1-3847 (Asymmetric disturbances)
and
o = 0-7088 (Symmetric disturbances).

If the actual neutral stability curve is found at
lower values of «, as is subsequently seen to be
the case, the above two values indicate that the
flow is much less stable for asymmetric dis-
turbances. The lower branch of the neutral curve
is also known to be asymptotic to « = 0 as
G—> oo since o =0 is the other inviscid
asymptote. In the following calculations, only
the asymmetric case is considered further.

Effect of Prandtl number on inviscid instability

It is not the object of this work to present a
detailed study of the effect of the Prandtl number
on plume stability. Nevertheless, it is convenient
to know if an increase or decrease in the stability
limit is to be expected by a variation of Prandtl
number. Since the coupled and uncoupled
solution merge toward the inviscid behavior at
large G, these asymptotic values were computed
for a wide range of Prandtl number. If the value
of the asymptote increases the region of insta-
bility also increases.

Figures 2 and 3 indicate the Prandtl number
dependence of this stability limit. The value of §
apparently reaches a minimum at ¢ = 1, whereas
o appears to approach an asymptotic minimum
asg — 0.

Uncoupled solution, including viscous effects
For moderate values of «G, the simplifications
made above cease to be valid and the viscous
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terms must be retained. The asymptotic solution
of the disturbance amplitude functions at the
outer edge of the boundary region where the base
flow quantities that appear in the Orr—Sommer-
field equations are small compared with the
other terms is:

¢ =€+ Be™

where b = /(a* —
constant.

In accordance with the method of Dring and
Gebhart [8] for flow over a vertical surface, the
procedure used here is to integrate the viscous
momentum disturbance equation from the edge

(12)
ifG), b,.,>0 and B a
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of the boundary layer to the mid-plane of the
plume, simultaneously satisfying boundary con-
ditions at zero and the asymptotic solution at

the edge of the boundary layer. The integration
was started at the outer edge with the asymptotic
solution and was contmued toward the mid-
plane. A system of eigenvalues and parameters
was considered to be correct when the asymptotic
expression provided a set of starting conditions
at the outer edge which resulted in a satisfaction
of the boundary conditions at n = 0.

There is no reason to believe a priori that this
uncoupled solution gives a proper representation
of the stability of the plume. It was found by
previous investigators that in similar natural
convection problems the coupling term is
important and may not be neglected. It is,
therefore, necessary to also determine the
coupled solution and to estimate the importance
of the coupling effect.

n

(4
The method that was employed in solving the
system of coupled equations is somewhat
different from that employed in the uncoupled
case above. The asymptotic behavior (for large
1) of {5) and {6} for the velocity and temperature
disturbance amplitudes, analogous to (12) for
the uncoupled case, was reported by Nachtsheim
[9]. Dring and Gebhart, using this asymptotic
behavior and following a procedure similar to
the one described above for the uncoupled case,
were able to solve the coupled equations for
natural convection flow near a vertical plate.
Since the method requires an interpolation in a
six-dimensional space, it was found to converge
very slowly to a solution in a stability plane.

Hieber [ 10] has shown that instead of employ-
ing the above procedure. it is more efficient to
individually compute the three linearly in-
dependent integrals which decay exponentially
for large n. Denoting these integrals by ¢4, ¢,, ¢,
(with associated temperature disturbances s,,
$,, 83), one has that, as n — oo,
¢, ~e7™, b3 ~ e,

¢, ~e™ ™, (13)
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where b was defined by (12) and
d = \/(a* — ifGo).

Since the asymptotic behavior of the base flow
temperature profile is

(14)

& =Cexp(—240F_ 1) (15)

(where F, = lim F(y) and is equal to 0-931 for
fn—c

o = 07) it follows from (6) and (13) that as
n — 0,

s; =Ciexp[—(a + 240 F)n]

s, =C,exp[—(b + 240 F,)n] (16)

sy = Cyexp{(—dn)

where C,, C, and C; are appropriate constants.
Denoting the complete solution by

¢ = ¢’1 + A¢2 + B¢3 (17

one proceeds to determine ¢,, ¢,, ¢; (and,
concomitantly, s, s, s;) by numerically integrat-
ing equations (5) and (6) from the edge of the
plume to n = 0; in each case, the appropriate
asymptotic behavior in (13) and (16) are em-
ployed as initial conditions. Having determined
the three independent integrals at # = 0, one
evaluates 4 and B by applying the two boundary
conditions ¢'(0) = 0 = ¢'”(0). The third bound-
ary condition at the midplane, s(0) = 0, will in
general not be satisfied. Supposing G and f to be
fixed, one then iterates on a (the eigenvalue),
repeating the process until the third boundary
condition is also satisfied.

In effect, then, this method reduces the
problem to finding a point in two-dimensional
(x is complex, in general) rather than in six-
dimensional space. It is this procedure which
has been employed in obtaining the coupled
results which are discussed below.

RESULTS
Eigenvalues and eigenfunctions are the com-
puted results of this study. The eigenvalue
information for the coupled and uncoupled case
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is shown in Figs. 4 and 5 in plots of « and f vs. G.
For neutral stability § is equal to §,. and a is «,..

The neutral curve for the uncoupled case was
computed for Prandtl number 0-7, and small
sections of curves were obtained for ¢ = 20,
6-7 and 10 as shown on Fig. 4. Also shown on
Figs. 4 and 5 is the coupled curve for ¢ = 0-7.
For ¢ = 07, the upper branch of the coupled
and uncoupled neutral curves appear to con-
verge and to approach the mviscid asymptote,
as expected. This suggests that the upper branch
does not go to zero as G increases, i.e. even as
G — oo there exist a certain unstable range of
wavelengths and this range seems to be wider for
asymmetric disturbances.

The “critical” Grashof number for the un-
coupled mode is 10-34 for ¢ = 0-7. The results
calculated allowing for coupling are shown in
Figs. 4 and 5, it is seen that the coupling term is
important at low G but that its effect decreases
as the Grashof number is increased. The
computation in the very low G region do not
reveal the existence of a lower branch of the
neutral curve and of the “critical” Grashof
number. At extremely low values of G our
boundary layer simplifications are no longer
applicable and therefore, the relevance of this
fact 1s not clear.

In Fig. 5, the curves are plotted in terms of .
Since physical frequencies of small disturbances
introduced into the flow remain constant as
they are convected by the base flow, one may
calculate the 8 vs. G path in this stability plane.
For a plume, these paths are defined by
BG ¥ = C. Several of such paths are shown on
Fig. 5 for the following test conditions (air,
atmospheric conditions, Q = 586 Btu/h ft, wire
length = 6 in., wire dia. = 0-005 in.). At low
frequency, the path enters deeply into the
unstable region as G increases and such disturb-
ances are strongly amplified. At higher fre-
quencies, however, the paths traverse less of the
amplified region and disturbances are probably
less amplified. At a sufficiently high frequency the
path does not penetrate the amplified region and
disturbances are always damped.
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for natural convection flows over vertical plates.
For such flows, constant frequency paths are
defined by BG?* constant. Therefore, disturbances
of all frequencies cross the neutral curve and
enter into the amplified region as they are
convected downstream. One may say that such a
flow eventually becomes unstable for all dis-
turbances, regardless of frequency, if they are
convected far enough downstream. In the
present case, very high frequency disturbances
appear to be always stable because they travel
on paths that do not enter the unstable region.
It can be shown that

A 8m

x oG 1)
where x is the distance from the source and o
and G parameters computed along the neutral
curve. Disturbances at the nose and along the
low branch of the neutral curve are seen to have
a very long wavelength, much longer than the
distance to the source which generates the
plume, thus decreasing the importance of this
region.



982

EXPERIMENTAL OBSERVATIONS

The foregoing results predict the behavior of
small disturbances as they are convected down-
stream in a plume rising from a line source of
heat. In order to assess the reasonableness of
these predictions, an experiment was performed.
A 6 in. long wire of 0-005 in. dia. was electrically
heated in air at atmospheric pressure and a
5 in. Mach-Zehnder interferometer was used
to determine the temperature field above the
source of heat. The light source was a Mercury
vapor lamp with a green interference filter, the
interferometer sensitivity being 7-25 degrees per
fringe for a two-dimensional field, 6 in. wide.
Adjustment was made to the infinite fringe, each
fringe representing an isothermal contour.

An interferogram of the unperturbed plume
in air was given by Gebhart et al. [6]. The inter-
ferogram clearly shows the extent of the thermal
boundary region of the plume. The steadiness
of the plume indicates the quiet surrounding in
the test section. Since for a Prandtl number of
0-7 the velocity and the thermal boundary
regions are of almost equal extent, the region seen
is essentially the whole plume. The rectangular
grid shown was introduced to check optical
distortions of the system of lenses, and to serve
as a frame of reference for distance measure-
ments. The vertical distance between the lines
is 3 in. and the horizontal distance is § in.

The study of stability was performed by
introducing small controlled sinusoidal dis-
turbances in the flow by means of a vibrating
ribbon. The vibrator was a strip of metallic foil
0-005 in. thick and § in. high. It was 7 in. wide and
positioned horizontally in the mid-plane of the
plume, above and parallel to the line source.

Figure 6 shows a sequence of plumes in air
perturbed with controlled sinusoidal oscillation
at different frequencies. Low frequency disturb-
ances are strongly amplified and after a few
oscillations the laminar base flow is completely
transformed. As the frequency is increased, the
amplification rate of the disturbances appears
to be less, and a longer distance is apparently
required to completely disrupt the flow. Dis-
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turbances of yet higher frequency were not
observed downstream.

The observed plume behavior is consistent
with the calculated results presented in Fig. 5.
The dotted lines represent the paths of disturb-
ances convected downstream at constant fre-
quency. The numerical values of frequencies
assigned to each line were computed for the test
conditions.

Corresponding to each case on Fig. 6 a
similar path on Fig. 5 can be drawn. Interfero-
grams perturbed with frequencies higher than
7 Hz are not presented since the disturbances
are of relative small amplitude and are difficult
to be visually detected. A hot wire constant-
temperature anemometer was used to follow
higher frequencies disturbances. It was found
that disturbances with frequencies higher than
about 12 Hz are not detected downstream. The
computed results for coupled disturbances (Fig.
5), predict that disturbances with frequencies
higher than 15 Hz are stable, since they do not
enter the unstable region. This discrepancy is not
unreasonable since the introduced disturbance
is not of perfect asymmetric form and does not
necessarily become asymmetric during con-
vection. Recall that the plume flow is appreciably
more stable to symmetric disturbances.

It was not possible in this experiment to
determine conditions of neutral stability. The
unstable region extends to very low values of G
and, for our test conditions in air, this is at very
small x (around 01 in.). Therefore it was not
possible to introduce disturbances at even
smaller x, moreover boundary layer simplifica-
tions are no longer valid very near the heat
source.

CONCLUSIONS

Previous work in the stability of natural
convection flows near vertical surfaces has
shown that buoyancy effects arising from temp-
erature disturbances couple with velocity dis-
turbances to promote instability. For an
unbounded plume flow it is similarly found that
the coupling effect is important, especially at low
G, and that it may not be neglected.
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SUR LA STABILITE DE PANACHES LAMINAIRES: QUELQUES SOLUTIONS NUMERIQUES
ET EXPERIENCES

Résumé—On a réalis¢ une étude de la stabilité hydrodynamique d’un panache laminaire s'élevant d’une
source thermique linéaire 4 I'aide de la théorie des petites perturbations de Tollmien—Schlichting. Des
solutions de fluides non visqueux de I’équation d’Orr-Sommerfeld sont obtenues pour des perturbations
a la fois symétriques et dissymétriques et on a calculé I'effet du nombre de Prandtl sur la stabilité sans vis-
cosité pour des perturbations dissymétriques. On trouve que I'écoulement de base est moins stable pour
le mode dissymétrique. En plus toutes les équations de perturbation de la quantité de mouvement couplées
ou non a I’équation d’énergie, sont numériquement intégrées avec les conditions limites appropriées
pour les perturbations dissymétriques superposées a ['écoulement de base du panache symétrique. On
obtient des courbes de stabilité neutre en fonction du nombre de Grashof.

En perturbant un panache dans I'air avec un ruban vibrant on a vérifié expérimentalement la prédominance
du mode suppos¢ dissymétrique des oscillations de I'écoulement. Un interférométre Mach-Zehnder est
utilisé afin d’observer comment les perturbations sont convectées en aval.

Les résultats expérimentaux démontrent que des perturbations a fréquence suffisamment hautes sont

stables quand elles scnt convectées en aval.

DIE STABILITAT LAMINARER AUFTRIEBSSTROMUNGEN: EINIGE NUMERISCHE
UND VERSUCHE

Zusammenfassung— Eine Untersuchung der hydrodynamischen Stabilitit einer laminaren Auftriebs-
strémung, ausgelost von einer horizontalen Linien-Wirmequelle, wurde unter Verwendung der Tollmein-
Schlichting-Theorie fiir kleine Stérungen durchgefiihrt.

Losungen der Orr-Sommerfeld-Gleichung bei Vernachlissigung der Viskositit erhilt man sowohl
fiir symmetrische wie unsymmetrische Stérungen, der Einfluss der Prandtl-Zahl auf die “‘nicht zihe
Stabilitit wurde fiir unsymmetrische Stérungen berechnet. Es zeigt sich, dass die Grundstrémung fiir
den unsymmetrischen Modus zu wenig stabil ist. Die vollstindige Storungs-Impuls-Gleichung, gekoppelt
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und entkoppelt mit der Energie-Gleichung, wurde mit geeigneten Randbedingungen durch Uber-
lagerung unsymmetrischer Storungen fiir die symmetrische Auftriebsstromung numerisch integriert.
Neutrale Stabilitatskurven erhilt man als Funktion der Grashof-Zahl.

Das Vorherrschen des angenommenen unsymmetrischen Falls der Stromungsschwingung wurde
experimentell durch Stérung einer Auftricbsstromung in Luft mit einem Vibrationsband nachgewiesen.
Fiir die Beobachtung der durch Konvektion aufwirts wandernden Stérungen wurde ein Mach-Zehnder-
Interferometer verwendet.

Die experimentelien Ergebnisse zeigen, dass geniigend hochfrequente Stdrungen stabil sind, wihrend

sie stromabwirts wandern.

K YCTONYUBOCTU JAMUHAPHBIX CTPYEK: HEKOTOPLIE
YUCJIEHHBIE PEHIEHNA U SKCIIEPMMEHTDLI

Annoranaa—lccnenoBanne T'MAPORMHAMUYECKON yCTOHYMBOCTH JIAMMHAPHON CTPYHKH,
UCXORAIEH M3 TOPUBOHTAJIBLHOTO JMHEMHOr0 MCTOUHHMKA TEILIA, NPOBOXMIIOCH, HMCIOJIb3YA
reopuio Maiux Bosmymenuit Toamuena-IllnmnxTunra. Heapnele pemenns ypasuenua Oppa-
3omMepdenbaa moIyUeHH KAK AJIA CHMMETPUYHEIX, TAK U JIJIA CHMMETPHIHLIX BO3MYILEHHH,
a BOMAHME ymucia IIpaHATIA HA HEABHYW YCTOMWYMBOCTL PACCUMTAHO ANA ACUMMETPHYHHIX
BosMymienuit. Halimeno, 4To OCHOBHOH NMOTOK MeHee yCTOHYMB K aCHMMETPHYHHIM BO3MylIe-
auaAM. Kpome Toro GHIIM YMCIEHHO NPOMHTErPMPOBAHEL YPABHEHMA KOJAMYECTBA ABMKEHHSA
PasBATHX BOBMYIEHMH COBMECTHO C ypaBHeHHeM 3Hepruu u Ges HEro NpH TPAHHYHBIX
YCJIOBMAX, COOTBETCTBYIOIIMX ACHMMETDPHUYHBIM BOBMYILUEHMAM, HAJIOMEHHHM HA CHMMeETp-
HYHOE OCHOBHOe TedeHume CTpyHku. IloaydyeHH HEHMHTerpasibHbE KpHUBHE YCTONYMBOCTH B
saBucuMocTH or umcaa pacroda. IIpeoGaaganue npemmojaraeMolt acMMMeTpPHYHON GopMul
KoJe6aHmit TeueHus OBIIIO TPOBEPEHO SKCIEPHMMEHTAJIbHO IIyTeM BOSMYIIEHMA CTPYHKH B
BO3AYXe C TOMOMBI0 KoueGmomelica JenTH. [aA HabmofeHusA BOSMYIIEHMH IO Mepe MX
TlepefBUHEHMA BHU3 110 [IOTOKY MCII0AbaoBacA unreppepomerp Maxa-Llennepa. PesyapraTsl
BKCIIEPMMEHTOB NOKABHBAIOT, YTO [OCTATOYHO GOJbIIAA YAaCTOTA BO3MYyIleHMIl ycroiynBa
ApH UX NepeMelleHHH BHHAS 110 MOTOKY.



